

The Community Emissions Data System (CEDS) and SLCF Inventories

October 11, 2021 Joint IPCC Expert Meeting on SLCF

Steven J Smith

(and CEDS project team)

Joint Global Change Research Institute, PNNL

ssmith@pnnl.gov

PNNL is operated by Battelle for the U.S. Department of Energy

Overview

- CEDS intro and methodology
- CEDS products and software
- CEDS current and future work
- SLCF Context and considerations

Funding for CEDS provided by:

The US Department of Energy Office of Science

and

The National Aeronautics and Space Administration's Atmospheric Composition: Modeling and Analysis Program (ACMAP)

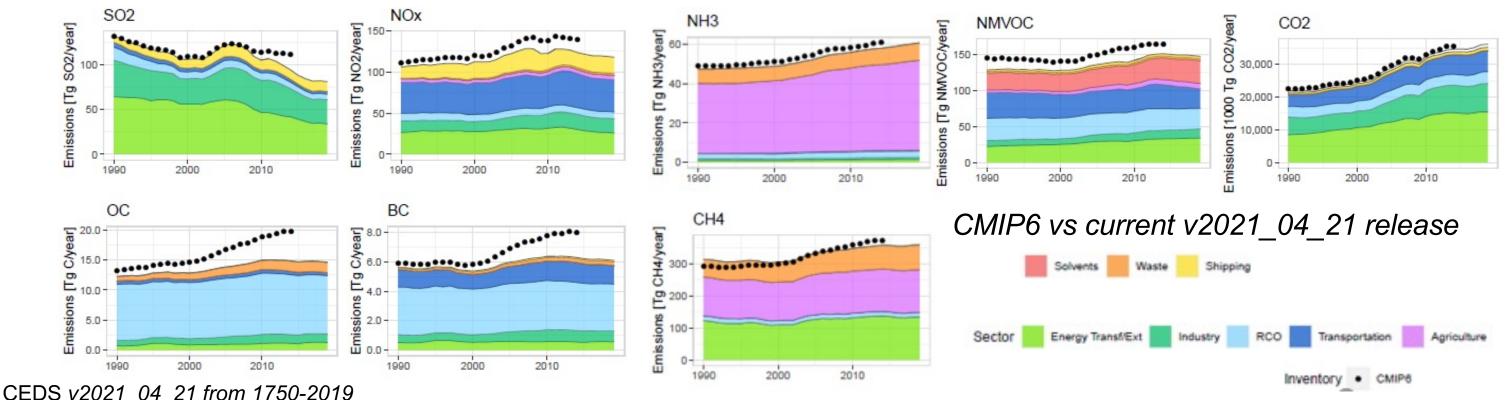
	-
<u>JRRENT</u>	<u>PREVIOUS</u>
lamza Ahsan	Natalia Mushegia
Andrea Mott	Caleb Braun
(anishka Narayan	Hailey Moore
Jazar Kholod	Ryan Bolt
Noah Prime	Han Chen
Harrison Suchyta	Kalyn Dorheim
	Grace Duke
	Jason Evanoff
	<u>Leyang Feng</u>

CL

<u>Collaborators and contributors</u>: B. McDonald, R. Andres, T. Bond, M. Crippa, L. Dawidowski, V. Fioletov, G. Janssens-Maenhout, Z. Klimont, J. Kurokawa, C. Li, M. Li, F. Liu, L. Liu, E. McDuffie, C. McLinden, Z. Wang, Q. Zhang</u>

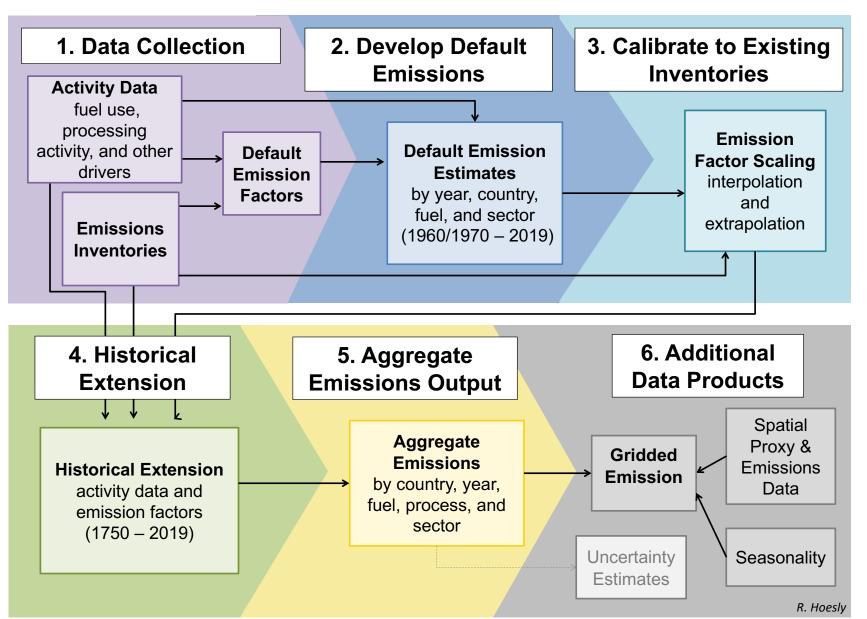
CEDS Project Team

gian


Alice Giem Benjamin Goldstein <u>Rachel Hoesly</u> Cecilia Moura Rohit Mandavia Presley Muwan Patrick O'Rourke Tyler Pitkanen Jonathan Seibert Linh Vu

CEDS Project Science Goals

Product: Global Emissions by Country, Sector, Fuel + gridded


- Annual estimates of anthropogenic emissions (not open burning) to latest full year.
- Seasonal cycle (monthly), speciated NMVOCs
- Gridded emissions (0.5°, also downscaled to 0.1°)
- Readily updated every year.
- Uncertainty estimated at the same level (in progress)

d est full year.

CEDS Methodology

Goals/Approach

- Consistent extrapolation over time (prevent spurious discontinuities)
- Community data review: aggregate (country, sector, ...) & gridded
- Release both data and data system
- Facilitate cross-country comparison (EF consistency, trends)
- Transparent emission results (assumptions -> emissions)

CEDS uses a "Tier 1/2 like" methodology for its default emissions estimate (adjusted where necessary to better match country data), which is then scaled to match country level data (which often uses higher tier methods).

CEDS Historical Emissions Data – Major Products

CMIP6 Data Release

- CEDS historical emissions data used for CMIP6 and follow-on research in the US and around the world
- CEDS emissions were the calibration/harmonized starting point for future scenarios used in CMIP6
- CEDS gridding routines were adapted to develop open-source software for CMIP6 future gridded emissions

Updated Data to 2019

CEDS v_2021_04_21 aggregate (country, sector/country, fuel/country) and gridded emissions data (Note: IEA energy consumption data is extended forward using BP energy statistics.)

CEDS Data System

- The CEDS data system is open source (e.g., used by McDuffie et al. 2020, to produce updated data with different sector/fuel resolution for use in Global Burden of Disease – GDB analysis)
 - Using the data system allows access to full fuel, sector, country data plus the ability to update any emissions assumptions. Most updates involve no or minimal coding.
- CEDS data system currently requires purchase of IEA energy statistics
 - We are exploring a fully open source option that uses UN energy statistics (1990 forward). Would this be helpful for country-level inventory development?

CEDS Sectors

Non-combustion sectors largely follow EDGAR categories

1A1a Electricity-public 1A1a_Electricity-autoproducer 1A1a Heat-production 1A1bc Other-transformation 1A2a Ind-Comb-Iron-steel 1A2b_Ind-Comb-Non-ferrous-metals 1A2c Ind-Comb-Chemicals 1A2d Ind-Comb-Pulp-paper 1A2e_Ind-Comb-Food-tobacco 1A2f_Ind-Comb-Non-metalic-minerals 1A2g Ind-Comb-Construction 1A2g Ind-Comb-machinery 1A2g_Ind-Comb-mining-quarying 1A2g Ind-Comb-other 1A2g Ind-Comb-textile-leather 1A2g Ind-Comb-transpeguip 1A2g_Ind-Comb-wood-products 1A3ai International-aviation 1A3aii Domestic-aviation 1A3b Road 1A3c Rail

1A3di International-shipping 1A3di_Oil_Tanker_Loading 1A3dii Domestic-navigation 1A3eii Other-transp 1A4a Commercial-institutional 1A4b Residential 1A4c Agriculture-forestry-fishing 1A5 Other-unspecified 1B1_Fugitive-solid-fuels 1B2_Fugitive-petr 1B2b Fugitive-NG-distr 1B2b Fugitive-NG-prod 1B2d Fugitive-other-energy 2A1 Cement-production 2A2 Lime-production 2A6 Other-minerals 2B_Chemical-industry 2B2 Chemicals-Nitric-acid 2B3 Chemicals-Adipic-acid 2C Metal-production 2D Degreasing-Cleaning

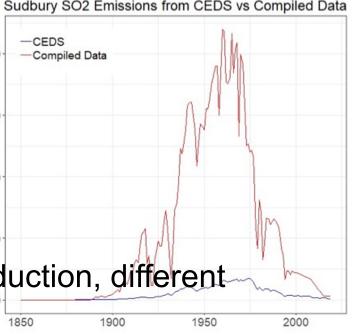
2D Paint-application 2D3_Chemical-products-manufactureprocessing 2D3_Other-product-use 2H_Pulp-and-paper-food-beverage-wood 2L Other-process-emissions 3B_Manure-management 3D Rice-Cultivation 3D_Soil-emissions 3E_Enteric-fermentation 31 Agriculture-other 5A_Solid-waste-disposal 5C_Waste-incineration 5D Wastewater-handling 5E_Other-waste-handling 6A Other-in-total 7A_Fossil-fuel-fires 7BC Indirect-N2O-non-agricultural-N

Are adding more detail

Combustion sectors largely follow IEA categories

CEDS – Current Work

Add additional sectoral detail


- Breakout as explicit sectors: refineries, coke production, charcoal production, different types of metal smelting.
- Add explicit point sources (more accurate gridded data with higher spatial resolution)
 - Add point source emission time series w/ spatial location using satellite and other data (perhaps also alter spatial distribution for NOx-related sectors)

Update time series to 2020

- 2020 emissions will reflect COVID-19-related changes in energy consumption
- Seasonal distribution of emissions will be different. Aim to incorporate this.
- Submit paper documenting new data releases

Produce uncertainty estimates

- Uncertainty ensembles focusing on SO2, BC, OC
- Expand on analysis of uncertainty in the last few years of the estimate

resolution) and other data

mption nis.

2000

1500

500

호 1000

Collaboration welcome!

- Very much appreciate the collaboration of the GAINS and EDGAR teams
- Many aspects can be improved. We welcome additional data and co-authors. Sectoral or regional or country focus. New species could also be added.

Feedback and participation through several means

- GitHub: https://github.com/JGCRI/CEDS (Links to new data releases here!)
- Zenodo CEDS Community: https://zenodo.org/communities/ceds/
- GMD CEDS article: https://www.geosci-model-dev.net/11/369/2018/gmd-11-369-2018.html
- ERL energy data uncertainty article: https://doi.org/10.1088/1748-9326/aaebc3
- CMIP6 gridded data download: <u>https://esgf-node.llnl.gov/search/input4mips/</u>
 - search by institution = PNNL-JGCRI
- General project page: http://www.globalchange.umd.edu/CEDS/
 - **Sign up for the listserv** listserv@listserv.umd.edu

SLCF Context

Air Pollutant Inventories

Compounds NO_x, SO₂, PM_{2.5} (inc. BC, OC), NH₃, CO, NMVOCs

Emission Resolution Hourly to monthly; Spatially explicit

Uncertainty No standard methods

Reporting Guidelines

No standard methodology guidelines

GHG **Inventories**

Annual; (city/state) National; Global

Reporting Guidelines IPCC Methodology Reports

All conventional air pollutants listed here are SLCFs.

From: Smith, S.J., E. McDuffie, & M. Charles (2021) Accounting for Emissions: Inventories for Climate Forcers and Air Pollutants (in prep)

Short-Lived

Climate

Forcer

Inventories

Compounds CO₂, CH₄, N₂O, F-gases

Emission Resolution

Uncertainty Standard methods by IPCC

Thanks to USEPA for **Recommendations: Harmonizing air** support. Pacific pollutant and GHG inventory production Northwest (in an SLCF context)

- Account for the different end uses of air pollutant and greenhouse gas emissions inventory data, while maintaining the useability of each (e.g., consider necessary sectoral, spatial, and temporal data resolutions).
- Align sectoral, chemical speciation, and emission definitions between air pollutant and greenhouse gas inventories.
- Enhance communication between AP and GHG inventory developer, research, and policy communities.
- Consider regional development priorities.
 - Understand the key sources across regions and compounds to prioritize development/reporting and data collection resources.
 - Develop flexible reporting protocols and methodologies that allow for accurate reporting but that are not overly Ο burdensome. For example, the use of the IPCC tier approach, e.g., higher tiers needed for some emission species in a particular sector, but lower tiers might be acceptable for other species.
- Air pollutant SLCFs should not be reported in units of CO₂-equilvalants.
- Draw on existing greenhouse gas inventory methodologies to provide more robust estimates of SLCF emission uncertainties

From: Smith, S.J., E. McDuffie, & M. Charles (2021) Accounting for Emissions: Inventories for Climate Forcers and Air Pollutants (in prep)

- Harmonizing sector categories is not always easy there can be substantial differences between data sources
 - Example, US energy data (both EIA and IEA) use different sector definitions than US emission inventory data.
 - Some problematic sectors in general: construction, residential, commercial, agriculture, shipping/fishing
- Need data (not estimates) for traditional biomass fuel use in many countries
- Make sure incentive structures (including reporting requirements) do not direct effort into lacksquareactivities that detract from creating the data most needed for in-country use
 - For some countries, a fine-scale GHG inventory might be less useful than improved understanding of major drivers of air pollutant emissions (non-compliant vehicles, traditional biomass consumption, structure of informal industries, etc.)
- Existing scientific inventories that provide data at a country level (EDGAR, CEDS) can be used to compare against country efforts. (and GAINS at regional level land for some countries)
- Need better mechanisms for country-level data (from scientific literature, grey literature, or official inventories) to feed back into scientific inventories.
 - We do this for CEDS, but there is certainty additional information out there that could be incorporated to improve the quality of the inventory.